Polycrystalline and Intracrystalline Growth of Akimotoite in a Clinoenstatite in the L-6 Tenham Chondrite

T. Ferroir, P. Beck, Ph. Gillet, A. Simionovici, L. Dubrovinsky, M. Bohn, A. El Goresy

Introduction

- Akimotoite is a major constituant of the transition zone of the mantle
- Akimotoite has been reported by Sharp et al. and Tomioka et al. in shocked meteorite

Tomioka et al., *Science*, 1997

Introduction

- Stability of the subducting lithosphere is mainly calculated based on olivine polymorphs
- Hogrefe et al. (*Nature*, 1994) reported that enstatite-ilmenite transformation is slower than olivine-wadsleyite-ringwoodite

 Kinetics and mechanism of enstatite-ilmenite transformation is of great interest to discuss subduction dynamics

Reflected light observation

- Clinoenstatite grain entrained in a shock melt vein (SMV)
- Grain close to a vein wall

MicroRaman spectroscopy

 Referring to reflected light picture, light gray part is akimotoite with extending lamellae into dark gray which is clinoenstatite

SEM investigation

- Polycrystalline part involving a solid state transformation starting at grain boundary
- Intracrystalline growth starting at akimotoite-clinoenstatite ENSE
 boundary and extending as thin lamellae to the interior

Chemical Composition

Image Display 2 Current	Oxide (wt%)	Akimotoite (polycrystalline)	Clinoenstatite and intracrystalline akimotoite
	Na2O	1,73	0,18
	K2O	0,11	0,02
	FeO	13,4	14,38
Ak	SiO2	54,2	55,27
	MgO	22,95	28,91
Cen	CaO	1,74	0,71
	MnO	0,4	0,45
	AI2O3	4,18	0,25
	Cr2O3	0,23	0,06
	P2O5	0,01	0
	TiO2	0,13	0,14
10 um vesi Ca 15 kV 80 nA	TOTAL	99,09	100,39

- Polycrystalline akimotoite has a higher concentration in Ca, Al and Na than clinoenstatite
- Akimotoite lamellae have the same composition as clinoenstatite

- Solid-state transformation of clinoenstatite into akimotoite
- Similar mechanism as in olivine-ringwoodite transformation
 both polycrystalline and intracrystalline mechanism

 Higher concentration of Ca, Na and Al in akimotoite compared to clinoenstatite support a diffusion from the SMV into akimotoite

Model 1 : Temperature gradient

• Simultaneous growth of polycrystalline and intracrystalline transformation triggered by a temperature gradient

Low temperature —> intracrystalline transformation

Model 2 : Two stage model

- First stage: polycrystalline transformation starting at grain boundary and Ca, Na, Al diffusion
- Second stage : intracrystalline transformation starting from the akimotoite-clinoenstatite grain boundary

Clinoenstatite-akimotoite growth kinetics

- Akimotoite lamellae ~ 0.75µ thick Polycrystalline
 ~ 25µ
- Polycrystalline transformation faster than intracrystalline transformation
- Rw lamellae in Tenham are 1-1.5µ (Beck et al., 2005, Nature)
- Enstatite-akimotoite intracrystalline transformation slower than olivine-ringwoodite

Conclusions

- Large clinoenstatite grain partially transformed
- Solid-state transformation and Ca, Al and Na diffusion

 Intracrystalline transformation is slower compared to olivine ringwoodite

ENS

Conclusions

- Higher metastability of the subucting lithosphere
- TEM investigation
- Processing data of synchrotron XRD : structure of natural akimotoite

 ⁽¹⁾
 ⁽¹⁾

École normale supérieure de Lyon

46, Allée d'Italie, 69364 Lyon cedex 07 - Tél.: +33 (0)4 72 72 80 00 - Fax: +33 (0)4 72 72 80 80 **http://www.ens-lyon.fr**