CARBON POLYMORPHS IN UREILITES : A FINE-SCALE RAMAN AND SYNCHROTRON MAPPING

T. Ferroir, A. Simionovici, A. El Goresy, Ph Gillet and G. Montagnac

Introduction

- Natural phases of carbon : diamond (3C), graphite, lonsdaleite (6H), chaoite and fullerenes
- In 2003, El Goresy et al. found a new HP phase in the Popigai impact crater

Introduction

- Ureilites : meteorites with 3% carbon mainly diamond and graphite
 - Compressed Graphite (Nakamuta and Aoki; 2000)
 - Secondary Graphite by Diamond-Graphite Back Transformation (Nakamura et al.; 2000)
- Possible Origin of Diamond and Lonsdaleite
 - CVD at Low-Pressure in the Solar Nebula (Fukunaga et al.; 1987, Matsuda et al.; 1991; 1995).
 - Natural Shock-Wave Propagation of Parental Graphite in the Parent Body (Lipschutz; 1964)

Samples

- Preparation : thin section of meteorite polished by diamond paste
- Preliminary Investigation by Optical microscopy Raman and SEM

Extraction

 On two different areas, two extractions mode : coring or FIB

Synchrotron Experimental Conditions on ID22 (µFID)

- Experiments in ESRF, Grenoble, France
- X-Ray wavelength: 0.7293 Å (17keV)
- X-ray beam diameter: < 1.5 µm vertical and 5 µm horizontal (K-B focusing)
- Sample geometry: 45° from incident X-ray beam; Energy dispersive detector at 90°
- Simultaneous imaging by X-Ray Diffraction and X-Ray Fluorescence mapping
- Point by Point (5 µm step) Scanning and Detection.
- Beam dwell time per spot for both XRD

and XRF 5sec

ID 22 XRF Mapping Results on cored sample

Transmission map

Mn map

Fe map

Ca map

Less dense area depleted in Fe, Mn, Ca and also other elements

carbon phase

ID 22 XRD results on FIB cut

Synchrotron Experimental Conditions on ID09 (HP)

- Experiments in ESRF, Grenoble, France
- X-Ray wavelength: 0.4132Å (30keV), X-ray beam diameter: 10µ.
- Slit-collimated beam
- Sample geometry: normal incidence X-ray beam and XRF 20sec/pts

ID09 results

Le Bail refinement of ID09 spectrum

- Refinement is compatible with :
 - 3C Diamond
 - 21R Diamond
 - Uncompressed graphite

École normale supérieure de Lyon

46, Allée d'Italie, 69364 Lyon cedex 07 - Tél.: +33 (0)4 72 72 80 00 - Fax: +33 (0)4 72 72 80 80 http://www.ens-lyon.fr

ID09 results

- This topotaxial relationship has been predicted theorically (De Vita et al., *Nature*, 1996) to explain the formation of graphite islands inside CVD diamonds at 2000K
 - graphite is derived from diamond
 - it needs high temperature (~2000K)
 - either formation very close to the sun by CVD (very unlikely)
 - or shock at high temperature

ENSÉ

Graphite is uncompressed : validation
of our hypothesis

Conclusions and outlook

- First observation of 21R natural diamond polytype
- Strong arguments in favor of shock origin of diamonds in ureilites
- Confirm shock origin by D/H isotope ratio (nanoSIMS)
- Active search for other natural polymorphs and diamond polytypes in ureilites